Blue Signal Search

Engage. Connect. Hire.

  • About Us
    • Stats
    • Blog
    • Awards
    • Diversity & Inclusion
      • Letter from our CEO
      • Women of the Workplace
    • Giving Back
    • Blue Signal Pets
  • Services
    • Retained Search
    • Contingent Search
    • Engaged Search
    • Staffing
    • Recruiting as a Service RaaS / RPO
  • Industries
    • Wireless & Telecom
    • DAS & Small Cell Wireless
    • Internet of Things (IoT)
    • Cybersecurity
    • Sales & Business Development
    • Information Technology
    • Finance & Accounting
    • Emerging Technology
    • Engineering
    • Cloud & Managed Services
    • Manufacturing & Industrial
    • Human Resources
    • Lighting
    • Marketing
    • Logistics & Supply Chain
    • Plastics and Packaging
    • Food & Agriculture
    • Medical & Healthcare
      • Hospitals & Healthcare
      • Biotechnology
      • Lab Diagnostics
      • Telehealth & Telemedicine
      • Medical Devices
      • COVID-19
    • Veteran Recruiting
    • Legal Recruiting
    • Nonprofit Recruiting
  • Clients
    • Our Search Process
    • 12-Point Interview Process
    • Recent Placements
  • Candidates
  • Search Jobs
  • Contact Us

NB-IoT vs. LoRa: It’s an Ecosystem, Not a Race

July 13, 2017 by Lacey Walters


As the number of connected devices rises, new technology standards have developed to handle the growing IoT space. While smartphones use cellular networks for their data, many IoT devices (for example, a smart water meter) only need to transfer small amounts of data. Relying totally on cellular or satellite networks would be expensive and use too much battery power for most devices. Similarly, WiFi and Bluetooth networks are not always a good or cost-effective solution. Most IoT devices don’t need to be in constant contact with a cellular network, so a new type of network was needed. Enter the LPWAN.

iot smart connected cityLPWAN stands for Low-Power Wide Area Network, a wireless network designed to efficiently connect smart devices across long distances, usually through a low bit rate. LPWANs are ideal for IoT devices that don’t need to manage large amounts of data, or for circumventing more expensive gateway technology. This can include smart meters, consumer products, and sensors. The overall value of the LPWAN market is expected to reach $25 billion within 4 years.

Many technology articles compare LoRA and NB-IoT technologies as if they were battling it out for dominance in the IoT market. In reality, these technologies are two branches within an emerging technology ecosystem. Similar to WiFi and Bluetooth, they will most likely to diverge into different niches, rather than directly compete with each other. This article will dive deeper into the capabilities, costs, longevity, maturity, and other differentiators of NB-IoT and LoRa-based technology.

 

What are LoRa and NB-IoT?

LoRa and NB-IoT both operate within LPWAN technology. They are two major standards for low-power IoT devices.

The LoRa Alliance developed LoRa in 2015 as a secure, energy-efficient IoT standard that makes it easy to onboard new devices. LoRa is shorthand for Long-Range (WAN) and is a modulation technology for LoRaWAN. LoRaWAN is a related set of low-power specifications for IoT devices. LoRa and LoRaWAN are not interchangeable terms; LoRaWAN refers to a LPWAN protocol standard and is not a technology in and of itself. LoRa defines the physical layer. Its security standards emphasize end-to-end encryption, data authentication, and intelligent key derivation.

NB-IoT is an abbreviation for Narrow Band IoT, a cellular standard developed by 3GPP. NB-IoT is not a standalone technology, but a cellular standard that aims to standardize IoT devices to be interoperable and more reliable. It can be implemented in a standalone or in-band spectrum manner and does not require gateways, while each LoRa device needs a gateway to function (which can affect total cost). NB-IoT connects base stations directly with sensors.

 

Key Differences

Both LoRa and NB-IoT standards were developed to improve security, power efficiency, and interoperability for IoT devices. Each features bidirectional communication (meaning the network can send data to the IoT device, and the IoT device can send data back), and both are designed to scale well, from a few devices to millions of devices.

Major differentiators between LoRa and NB-IoT standards:

Table of Key Differentiators - Lora vs NB-IoT

Latency

The most important differentiator of LoRa and NB-IoT is their latency. Here’s a quick refresher on network latency: networks and devices communicate with each other using data packets. But these data packets don’t always get transferred immediately, because it eats up battery power and network coverage. Latency is the time delay in transferring data after making a transfer request. A low latency device “checks in” with the network more often than a high latency device.

For instance, a smart sensor detects that a pipe has broken and needs to send an alert to the network. If this sensor is high latency, it doesn’t transfer data to the network very often, and it might be a few hours before the network receives the alert. If the sensor is low latency, the network will receive the alert much sooner.

 

Location / Density

Because LoRa devices use gateways, they work well in remote or rural areas without 4G coverage. They use unlicensed spectrum to communicate with the network. They also work well when they are in motion (for instance, on a truck, plane, or ship). This makes them well suited for supply chain and transportation applications. LoRa’s geolocation is non-GPS, so devices offer location services without heavy battery usage.

NB-IoT devices don’t need a gateway, and they rely on 4G coverage, either using spectrum within LTE, GSM spectrum, or “standalone,” which refers to unused frequency within LTE guard bands. This means that devices with NB-IoT chipsets perform better in indoor applications and dense urban areas. NB-IoT uses GPS technology for geolocation.

 

Power Usage & QoS

While NB-IoT and LoRa are both designed for low-power devices, NB-IoT’s lower latency means that it uses battery juice faster than LoRa. The trade-off is that it can guarantee a better quality of service (QoS) than LoRa due to faster response times. NB-IoT also boasts much higher data rates than LoRa.

What are optimal uses for each technology?

Depending on the needs of an application, one technology may be more suitable than another. For most applications, the biggest considerations are latency, battery life, coverage, and cost. In this capacity, NB-IoT and LoRa serve different purposes.

Depending on the industry and application needs, either LoRa or NB-IoT may be the better choice.

Smart metering:

Most meters process only modest amounts of data each day, so LoRa is best for most applications, assuming that the cost of installing a gateway is not prohibitive. NB-IoT is a good choice for applications that need more frequent communication or high data throughput.

Manufacturing:

Industrial automation takes many forms, and there is no one answer for this space. NB-IoT is a better choice for manufacturing applications that need more frequent communication and guaranteed QoS, while LoRa is a better choice for lower-cost sensors and longer battery life. Both are useful in different environments.

Retail & POS:

NB-IoT is a better choice. Retail transactions involve less predictable data and surges of customers, so the low latency of NB-IoT is not a good fit. Retailers risk losing sales (and customers) with the long latency time of LoRa applications.

Supply chain tracking:

LoRa is the clear winner for supply chain and transportation applications, because its mobile gateways perform reliably on a moving vehicle. Because shipments in transit or in storage don’t need to transfer much data, LoRa’s higher latency, lower data rates, and longer battery life all make sense. LoRa is also better suited for coverage in rural warehouse areas.

Smart city/buildings:

LoRa is the better choice for most smart buildings, due to easier placement of gateways. However, buildings have their own electricity supplies and therefore have less of a need for LoRa’s battery efficiency, so NB-IoT may be a better option for smart buildings with very high data throughput or a need for very low latency, such as high-security facilities. NB-IoT is also likely better for smart city networks that connect dozens or hundreds of buildings, whereas LoRa is better for a single-building application.

Agriculture:

Spotty cellular network coverage in rural areas makes LoRa the obvious choice, since LoRa doesn’t require 4G. LoRa works particularly well to track agricultural indicators, such as water usage, soil pH, and temperature gauges, which don’t shift rapidly or need immediate responses. Not only that, LoRa’s lower price point is a top selling point for farmers.

How mature is the technology?

LoRa had an early two-year lead, and highly integrated LoRa modules are already available on the market for a competitive price, with more options already in development. LoRa is already considered the IoT network industry standard for several countries, including the United States. NB-IoT options are new but are already gaining traction in industry spaces that aren’t a good fit for LoRa. The technology as a whole is expected to mature quickly due to the enormous market demand.

What about Sigfox?

Sigfox is a connectivity company whose LPWAN technology compares closely with technologies within LoRa and NB-IoT standards. Their ultra-narrowband technology uses ISM (industrial, scientific, medical) radio band. While Sigfox is growing in the space, it has not yet approached the market penetration of LoRa and NB-IoT. Sigfox’s claim to fame is its ability to cover large areas, including underground objects. The major drawback is its low throughput (about one third of LoRa) and much lower payload/message size (10 bytes vs. LoRa’s 50 bytes—in other words, its maximum message size is about one fifth of LoRa’s). Although Sigfox and LoRa compete more directly than LoRa and NB-IoT, Sigfox is more of a race for regional coverage, similar to the way GSM and CDMA race in the early days of cellular networks.

In the end…

In the end, there is no clear winner between NB-IoT and LoRa standardized devices. They address different needs. They are each part of a fast-growing network ecosystem that will host nearly 50 billion devices by the end of 2020.

We specialize in staying ahead of the telecom technology curve. Get in touch with us by emailing info@bluesignal.com.

Filed Under: Blog Posts Tagged With: connected devices, connectivity, emerging technology, internet of things, iot, lora, LPWAN, m2m, module, NB-IoT, smart city, technology, wireless

Top IoT Industry Trends of Q1 2017

April 19, 2017 by Lacey Walters


The Internet of Things has enjoyed top buzzword status for a while now, but the technology has made steady strides away from the hype and towards a tangible, profitable reality. Here are the top trends of IoT since the start of 2017:

1. 3GPP Standardization of NB-IoT (Narrow-Band IoT) for LPWAN

NB-IoT technology took a leap forward last month when Cisco and Optus announced at Barcelona’s MWC they have completed live trials of NB-IoT technology on the Cisco Jasper platform. Most new connected devices are expected to launch on an LPWAN (Low Power Wireless Access Network) platform, especially inexpensive devices that use low levels of power and large ranges (smart umbrellas and toasters, for example).

NB-IoT is shorthand for Narrowband IoT (NB-IoT, also called LTE-M2). It is a radio technology standardization proposal developed by Huawei, Ericsson, Qualcomm, Vodafone, and other telecom heavy hitters. The Internet of Things is made up of hugely diverse smart devices—from airplanes to bracelets. To improve interoperability, NB-IoT was designed to allow many different types of devices and connectivity services to connect over cellular telecom bands—not just smartphones and tablets. Read more about NB-IoT here.

 

2. Connected Cars & Self-Driving Technology

CES 2017 was dominated by connected cars and related self-driving technology, with over 1000 exhibitors featured vehicle technologies or accessories. Tesla investors worried last year that self-driving technology would take a nosedive after one of their test drivers was killed last year in a fatal crash. However, commercial and private interest has grown by leaps and bounds. Uber got an early lead in the driverless tech race when it began testing driverless cars late last year in Phoenix, Pittsburgh, and San Francisco. Despite setbacks when a driverless car crashed in Arizona this month, the program is back on track. Google, Ford, and GM have also been testing self-driving technology in the United States.

Uber Self-Driving Car

Image credit: Business Insider

 

Intel is the biggest newcomer to the driverless technology arena. In a $15 billion deal on March 14, it purchased Mobileye, an OEM for driverless vehicle sensors and cameras. Uber’s driverless vehicles use a sophisticated combination of roof-mounted LiDAR sensors and color cameras to interpret the road. Intel is expected to scale similar digital vision technology components to sell to automakers that cannot make the huge investment necessary to develop the technology in-house.

CES 2017 Divergent 3D Connected Car

Image: At CES 2017, Divergent 3D unveiled the Blade, a 3D-printed connected car.

 

In the connected car software arena, AT&T boasts that it already connects 11 million cars on its network. Cisco’s Jasper IoT software now supports 50 vehicle brands, including Honda’s proprietary MyHonda Connected Car platform. Cisco has had many wins in the IoT arena with its Jasper platform, releasing smart solutions for fleet management, connected buildings, industrial equipment, and more. Over 9000 companies and 40 million smart devices run on Jasper’s Control Center software, with millions of devices being added every month.

 

5G Advancements

At Mobile World Congress 2017, South Korean carrier KT announced that it will have the world’s first commercially viable 5G network by 2019. While this is many years away from reality, many service providers are shifting discussions away from features to talk about standardization opportunities. Without a concerted standardization effort, 5G will likely take much longer to launch and be slower to grow once it does.

Ericsson recently launched its “5G for India” program to conduct 5G testing and ecosystem development in India. Many governments are considering their options for modernizing infrastructure to prepare for 5G, including China, the UK, and Thailand. Any country that gets an early lead in 5G availability will likely enjoy an economic leg-up over less connected countries. The challenge is that many infrastructure must be built from scratch, especially in countries with large rural areas.

 

IoT Security

Due to last October’s massive DDoS attack that used IoT device back doors to cause massive service outages, security is a top priority in the IoT space. Authentication and device-specific security are improving, but Sanjay Khatri, director of product marketing for IoT Services at Cisco, says that IoT security “takes a village.” If the network is secure but hackers can penetrate the device itself, the security chain has failed. Security is necessary at every link of the IoT value chain.

Information security is an escalation war, and providers at all levels are racing to protect IoT devices and applications against digital attacks. One of the most important IoT security measures already in use is REST-based APIs, which protects the movement of data between devices, applications, and back-end systems. Many device manufacturers are building two-step or even three-step authentication features into their devices. Instead of a single password, many connected things use biometrics (like a fingerprint) or digital certificates in addition to passwords and PINs. Beyond the device layer, cloud platforms like Cisco Jasper rout the data through VPN tunnels to prevent DDoS and similar network-wide outage attacks.

 

Have a hiring need or questions about the IoT industry? Contact us for a free consultation at info@bluesignal.com.



Filed Under: Blog Posts Tagged With: 3d printed, 3GPP, 4G, 5g, ces, connected cars, connected devices, cybersecurity, emerging technology, internet of things, iot, job market, LPWAN, lte, m2m, NB-IoT, self driving car, smart devices, technology, uber, wireless

Small Cell Industry Trends & Talent Predictions

March 24, 2017 by Lacey Walters

Trend #1:  Outdoor Small Cell Growing 50% Faster than Indoor Solutions

The original purpose of small cells was to efficiently reuse spectrum as a capacity solution – not as a replacement for cell towers. However, outdoor small cell use as a coverage solution has grown significantly, both in rural areas and dense urban areas. While DAS and low-power small cells are well suited for indoor applications like office buildings and open-air venues like stadiums, high-power small cells are gaining ground in outdoor applications. Carriers have found that it is cheaper to densify and reuse spectrum rather than buy new blocks of spectrum for macrocell coverages. The major takeaway is that network providers and customers are taking a more nuanced view of coverage that includes a mix of small cell types and power levels to provide efficient, reliable coverage and a better handling of capacity.

Small cells still cannot beat the distance and power of macrocells (1 macro tower equals 10-30 small cells), but small cells are a cheap and effective way to patch coverage holes (at least for now — the maintenance and backhaul costs are still significant). Verizon is investing heavily in small cell densification in preparation for 5G and to support larger capacity demands. It has announced that it will begin commercial deployments this year.

Small cell comparison chart

Chart: Small cells include a mix of indoor/outdoor and high/low power solutions. Small cells improve network coverage and/or capacity. Wi-Fi is included for comparison, but is not considered small cell. 

 

Only two-thirds of new small cells are indoor, and the rest are deployed in outdoor environments. The United States is a hotbed for telecom innovation, but international demand is growing strongly as well. In the next two years, outdoor small cell is projected to jump 600%. By contrast, indoor/in-building solutions are projected to grow only 400%.

One important point to note: this small cell definition includes femtocells, whose cell radius is usually less than 50 feet and can service about 5 users at once. While femtocells do technically qualify as DRAN small cells, their application differs from other members of the small cell family.


Trend #2:  Wi-Fi Starts to Slip

It is surprising to think of Wi-Fi as an obsolete technology, but industry trends show that Wi-Fi may be on a downward slope. It used to be that only a lucky few had access to unlimited data plans, usually grandfathered from years past. Today, unlimited data plans have made a comeback. T-Mobile, Verizon, Sprint, and AT&T all offer unlimited data plans. Slower speeds have replaced overage charges for heavy data users.

LTE’s biggest advantage over Wi-Fi is that LTE can be taken anywhere (and Wi-Fi, which is an extension of LAN, will never be as mobile as LTE). As data usage climbs, people expect to use all of their devices everywhere, and finding a Wi-Fi hotspot becomes more of a burden. Coffee shops and public areas are less enthusiastic about footing the bill for Wi-Fi when many customers only buy a cup of coffee and use the network for hours. Wi-Fi technology is fussy and less secure than LTE. As security becomes more and more of an issue, customers are likely to demand LTE-based solutions over Wi-Fi. This trend will accelerate as expanding technology offers more options for less money.

Unlicensed and Licensed Spectrum

Overview of key differences in LTE-U, LAA, and MuLTEfire by Qualcomm.

Image: Overview of key differences in LTE-U, LAA, and MuLTEfire. Source: Qualcomm

 

Unlimited data is not the only competitor to Wi-Fi. Carriers are rushing to densify networks and expand unlicensed spectrum coverage, a family that includes LTE-U, LAA, and MuLTEfire. Wi-Fi is becoming more of a niche technology than the go-to. LTE-U (deployments in the US, Korea, and India) and LAA (deployments in the EU, Japan, and others) use unlicensed spectrum aggregated with licensed spectrum as a Wi-Fi coexistence strategy. They improve the signal without interfering with Wi-Fi. MuLTEfire, by contrast, is LTE realized fully in unlicensed spectrum, and it poses the most serious threat to Wi-Fi. The technology may advance to the point where customers can install a private LTE router in their homes, just like Wi-Fi but with the added benefits of LTE. If the price is comparable to Wi-Fi coverage, this could make home Wi-Fi coverage obsolete.

All the way back to 1993, data usage has never dropped. Growth has accelerated year over year as carriers continue to throw money into network expansion, mostly on outdoor small cell technology to keep costs down and allow for future compatibility with 5G devices.

5G is projected to unseat (or at least compete strongly) with Wi-Fi, especially when it comes to connected devices. Connected devices are compatible with Wi-Fi and LTE, but 5G is specifically designed for compatibility with connected devices. This may prove to be the downfall of Wi-Fi. One opposing viewpoint is Wi-Fi is not going anywhere. As new technology emerges within LTE, Wi-Fi technology is also evolving. New Wi-Fi technologies are closer to carrier-grade — and carriers still rely heavily on their ability to offload on Wi-Fi.

Voice vs. Data Usage since 2011

Mobile voice traffic has been flat since 2011, while data traffic has climbed 1800%

Image: Voice traffic growth has been flat since 2011, while data consumption has jumped over 1300%. Graph: Akamai’s Q2-2016 State of the Internet Report. data from Ericsson’s Mobility Report.

 

One opposing viewpoint is Wi-Fi is not going anywhere. As new technology emerges within LTE, Wi-Fi technology is also evolving. New Wi-Fi technologies are closer to carrier-grade — and carriers still rely heavily on their ability to offload on Wi-Fi.

 

Trend #3: Changing Government Regulations

Many regulations are outdated, obsolete, and have no guidelines for the newest technology, including small cells. This hits hardest at the local level, where budgets are tight and laws can be slow to change. Many local municipalities do not have the resources to keep up with telecom technology that is changing at lightning speeds, let alone revamp the regulations.

Carriers are expecting the FCC to streamline municipal telecom regulations this year to ease the administrative and financial burden of installing small cells, towers, and other network infrastructure. Currently, many cities classify small cells the same as macrocell towers, even though the two technologies have totally different footprints, sizes, and expense. A tower can be hundreds of feet tall, while a small cell can be the size of a lunchbox. However, some cities charge the same fees for both. Some companies have attempted to classify their solutions as public utilities to save themselves hefty permit costs and administrative roadblocks.

Despite some difficulties, there are success stories. The city of Orlando, FL recently accepted bids for a large-scale small cell installation to improve coverage in the city. Some municipalities, especially in tech-friendly large urban areas, are moving ahead with ambitious small cell projects. Laws are changing to better accommodate new technologies. The city of Philadelphia worked with AT&T and Verizon to deploy a 37-node small cell network in anticipation of Pope Francis’s visit in September 2015. The project took only 9 months from start to finish. It was able to proceed thanks to huge public demand and pressure for the city and the telecom companies to work together to achieve a mutual goal.

 

Predictions for Small Cell Talent

Network providers are facing many challenges for their projects, including a severe talent shortage. We predict the following skills will be in highest demand for 2017 and early 2018:

IoT/M2M and 5G

The distance between IoT and small cell is shrinking. As Wi-Fi dependence begins to drop, network providers will need to build more and more IoT/M2M functionality into network designs (especially as 5G comes closer to being a reality). M2M connections are expected to make up almost half of all connected devices by 2020. Specifically, companies will be looking for people with hands-on experience within the IoT value chain. This includes IoT platform design, smart object design, module design, and integration with 3rd party applications.

Because of spectrum limitations, 5G will deploy on a very high frequency, including mmW. This means that traditional cell towers cannot deploy that spectrum, even with advanced beam-forming techniques. Small cells are the only way to deploy the mmW spectrum. This means carriers will have to deploy small cells—possibly on the order of millions—within the next 10 years. Since small cells have design, maintenance, and repair needs just like macrocells, there will be a huge uptick in field work, engineering, construction, and related job duties.

This is one of the biggest looming talent shortages. The IoT/M2M/5G space will create millions of jobs — some estimate over 4 million IoT developer jobs alone by 2020. However, experts also expect that IoT and connected device technology will severely disrupt the labor market. Millions of people who work low-level jobs in fast food, retail, transportation, and supply chain will be displaced.

Standardization & Infrastructure Sharing

Infrastructure sharing is a growing trend while the telecom landscape continues to shift rapidly. There will be a very high demand for employees who can understand and build strategy around shared infrastructure. This will be especially true in the next five years as networks complete coverage expansion projects.

European markets had another record year in 2016 for colocation data center capacity. Colocation promotes standardization and harmony between carriers’ data/voice technology, which is good for the consumer and the industry. Demand will continue to increase for employees with a sound understanding of existing 3GPP standards, as well as foresight for how standards may evolve to accommodate emerging technology.

Interference Mitigation Skills

In an increasingly crowded network, interference is one of the top challenges for high-traffic networks. Managing interference and higher spectrum utilization techniques will be a key goal for network providers, integrators, colocation facilities, and product developers, with applications at almost every level. Demand for this skill will rise fastest among design engineers and product managers. Expect strong demand for sales engineers who can explain interference mitigation technology to potential customers.

Public Sector Technical Sales Skills

While private sector companies are scrambling to upgrade their networks, the public sector is more uneven in its acceptance of new telecom technology. With the challenge of previously mentioned regulatory hurdles, telecom firms need to arm themselves with persuasive and highly knowledgeable salespeople. A strong salesperson can effectively navigate administrative roadblocks and match municipal requirements with network solutions that work. By contrast, some public sector entities are way ahead, aggressively updating building and fire codes with new wireless standards. Companies who win key installation deals early on are more likely to enjoy repeat business and maintenance contracts from the same customers.

 

If your company is searching for small cell talent, contact us for a free evaluation of your hiring needs. Reach our telecom specialist directly at mwalsh@bluesignal.com.

 

Filed Under: Blog Posts Tagged With: 5g, DAS, emerging technology, government, iot, job market, lte, m2m, news, recruiting, small cell, strategy, talent, tech, telecom, telecommunications, trends, wi-fi, wireless

Talent War in Emerging Tech: 5G, Small Cell, Connected Tech, IoT/M2M

September 6, 2016 by Lacey Walters

The emerging tech space is changing fast. Between 30 and 50 billion new IoT devices will be online by 2020. The emerging 5G network will boast a 1000x capacity increase and compatibility with new applications such as M2M, VR, AR, and connected things. Small cells and other related technologies are rapidly finding new niches. In the past six months, the technology talent surplus in these fields has flipped upside-down into “negative unemployment.”

Indeed.com reported a sharp increase in IoT-related jobs listed within the past 18 months.

 

New technologies are always on the rise: connected things, connected cities, connected cars, etc. To win the war, you need a connected recruiter. Consider this quote from The Art of War, the famous military strategy treatise written nearly 2500 years ago by Chinese general Sun Tzu:

“If you know the enemy and know yourself, you need
not fear the result of a hundred battles. If you know
yourself but not the enemy, for every victory gained
you will also suffer a defeat. If you know neither the
enemy nor yourself, you will succumb in every battle.”

                                                 — Sun Tzu, “The Art of War”

 

Any company trying to hire qualified talent is in a war with the competition. In a war, good strategy is critical to success; victory does not happen by accident. The most important factor that tech companies do not consider is what their competition (the enemy) offers:

  • Compensation packages

  • Benefits and perks

  • Training, certifications and education

  • Tools and resources

  • Environment and flexibility

  • Career growth and visibility

 

Are you fully aware of what you and your company offer?

Top candidates have their pick of companies. We conduct a company analysis with each hiring manager, including selling points for the job, what their competitors are offering top candidates, and how to structure a truly competitive overall offering to win the war.

Hiring is never easy, and the difficulties are compounded in a space with a huge skills gap and a short supply of talented workers. When you work with Blue Signal, you partner with recruiters who have deep industry knowledge providing a competitive edge. Never fear the result of a hundred battles (hires).

For a free consultation on how we can locate the best hire, contact us today at info@bluesignal.com. See our recent placements here.

 

Filed Under: Blog Posts Tagged With: 5g, compensation, corporations, emerging technology, hiring, iot, job security, large companies, m2m, networks, small cell, wireless

Copyright © 2023 · Dynamik-Gen on Genesis Framework · WordPress · Log in

  • BSS Logo
    • Phoenix (HQ)

    • 4545 E Shea Blvd - Suite 250
    • Phoenix, AZ 85028
    • Phone: (480) 939-3200

    CLIENT RESOURCES

  • Recruiting Services
  • Staffing Services
  • Recruiting as a Service | RPO
  • Outplacement Services
  • Diversity, Equity, & Inclusion
  • Giving Back
  • Veteran Services

    CANDIDATE RESOURCES

  • Privacy Policy
  • Resume and Career Services
  • Search Jobs

    INDUSTRIES

  • Wireless & Telecom
  • Internet of Things
  • Manufacturing
  • Logistics & Supply Chain
  • Accounting & Finance
  • Cloud & Managed Services
  • Medical & Healthcare Services
  • Emerging Technology
  • Information Technology
  • Cybersecurity
  • Food & Agriculture
  • Nonprofit
  • Lighting
  • Legal
  • Plastics & Packaging

    INSIGHTS

  • Blog
  • Stats
  • News & Media
  • Blue Signal Pets

    CONNECT WITH US

  • Facebook
  • LinkedIn
  • Twitter
  • Instagram
  • Yelp
  • Google
  • Blue Signal Search BBB Business Review

Copyright 2023 All Right Reserved - Blue Signal | Designed by Sting